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Detection of weak directional coupling: Phase-dynamics approach versus state-space approach
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We compare two conceptually different approaches to the detection of weak directional couplings between
two oscillatory systems from bivariate time series. The first approach is based on the analysis of the systems’
phase dynamics, whereas the other one tests for interdependencies in the reconstructed state spaces of the
systems. We analyze the sensitivity of both techniques to weak couplings in numerical experiments by con-
sidering couplings between almost identical as well as between significantly different nonlinear systems. We
study different degrees of phase diffusion, test the robustness of the two techniques against observational noise,
and investigate the influence of the time series length. Our results show that none of the two approaches is
generally superior to the other, and we conclude that it is probably the combination of both techniques that
would allow the most comprehensive and reliable characterization of coupled systems.
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I. INTRODUCTION phase of the othd23] (cf. also Ref[6]). In its original form

The complex interplay of dynamical systems results in g€ evolution map approachf Ref. [23] requires very long
ime series for a reliable and unbiased detection of weak

rich variety of synchronization phenomena. While often thefj_ onal i but after introduci .
unidirectionality of the underlying interactions is evident, bi- d"éctional couplings, but after introducing some correction
directional interactions appear indispensable for the funct€'Ms and confidence intervals to the coupling estimates it

tioning of other dynamics. For a wide variety of dynamicsWaS made applicable to shorter time series as . :

the type and direction of driving, however, cannot be de- !N @ conceptually different approach, the dynamics are
duceda priori. In particular, this problem often arises in the Ziﬁ?brnﬁ% tgo?nVeOI(\jlgtg;n?i?]?;gch;%ZeLg;gﬁ%s'é);:étis’ctaﬁozggce
analysis of interactions in climatic proces$és electric cir- . . y
cuitsy[z] neuronlike oscillator3-5] pan d pﬁyﬁiological sys- Here, a reconstruction of the state vectors can be obtained by
: ’ h the h d', et 6 means of delay coordinates. If the states of the response sys-
neen[;rs\'r 0?}%%] (6)1rsneueron:|m da;za?ﬁir Cé;)rgi]p'haeﬁgye Szﬁﬁe ”Z%Ie temY are related via some function to the states of the driver

: onal : systemX, i.e.,y(t)=W(x(t)), one speaks of generalized syn-
detection ofweak directionalcouplings between two sepa- cponization. From the existence f it follows that close
rate dynamical systeméandY from the analysis of pairs of  giates of the drive system will typically be mapped to close

signals measured from them appears as a key to an advancg@tes of the response system. However, in case of general-
understanding of many dynamics in nature. ized synchronizationV is likely to be bijective, and, there-
Different approaches to this aim have been developed ifgore, also close states of the response will typically be
the framework of linear and nonlinear time series analysisnapped to close states of the driving sys{@%. In analogy
and information theory. Among the nonlinear techniques ao the phase-synchronized motion, the coupling direction can
fundamental approach was developed for oscillatory proenly be reliably estimated for the nonsynchronous regime.
cesses exhibiting a single pronounced main rhythm. In suchklere, closeness in the response implies closeness in the
a case one can calculate instantaneous phases and amplitudeser predominantly. We address this point, which might
of the oscillations from the time series using techniques suckound contraintuitive at first sight, in more detail below, and
as the analytic signal approach implemented via the Hilberhere just note that it represents a complementary criterion for
transform[22]. Subsequently, the phase variables can be inthe detection of weak directional couplings and that there
vestigated for possible interrelations. If the phases are founédxists a whole family of state-space approaches that directly
to be locked, phase synchronization is established indicatingr indirectly exploit this criterior{9,10,13,20,26-32
a strong coupling. In this synchronous regime, howeer, Confronted with a pair of time series measured from two
andY have lost their separateness. In consequence, couplingiknown dynamical systems it appears difficult to de@de
direction becomes nonidentifiable. Only for weaker cou-priori whether a phase dynamics approach or a state-space
plings, which result in unsynchronized motions, a reliableapproach is more appropriate for the detection of a potential
identification of the coupling direction can be achieved usingdirectional coupling of the dynamics. It is a well-known fact
the phase variables. For this purpose, Rosenblum and Pikhat weak couplings typically affect the phases while the os-
ovsky proposed to reconstruct model equations for the phasgllators’ amplitudes can remain essentially uncorrelated
dynamics of the two systems in order to investigate whethef33], and one could conjecture that phase-dynamics ap-
the phase dynamics of one oscillator is influenced by theroaches are superior to state-space approaches for any dy-
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namics for which well-defined phases exist. However, theoscillators, and, despite their simplicity, reflect adequately
only way to actually test such hypotheses is to compare ththe properties of a wide range of oscillatory processes.
performance of phase-dynamics and state-space approachéserefore, they were chosen in REZ3] as a basic object to

in a controlled setting using mathematical model systemsderive coupling characteristics. Following Ref23,24] pre-
This comparison was still lacking and therefore declared asisely, we used third-order polynomials fBy, and set the
the aim of the present study. We chose the extended evolunterval r approximately equal to one basic oscillation period
tion map approach by Smirnov and BezrucHig#l] (Sec. for all numerical examples beloynamely, 7=20At).

A1) as a representative phase-dynamics approach, and a The strength of the influence of the syst&hon the sys-
statistics by Arnholdet al.[10] (Sec. Il A 2 as a representa- tem X is determined by the steepness of the dependence of
tive state-space approach. We applied both approaches to fi% on ¢y, i.e., by dF,/ d¢,. Therefore, one defines
mathematical model systentSec. Il B) to reveal the superi- 1 (27 (2

ority and inferiority of the one or the other approach in dif- - _f f 2 )

ferent settings. Our results are presented in Sec. Ill followed o 27%)y Jo (9o, ) dd,ddy @

by the discussion and conclusions in Sec. IV.
y It can readily be showh24] that

2 _ 2/ A2 2
Il. METHODS AND SYSTEMS cr= 2 nX(ah,,+ b 5

mn

A. Methods Finally, the directionality index is defined asli=(c,

In the following we will assume that we deal with two —c/(cc*cy), wherec, is defined in complete analogy .
scalar time serie§,} and{y,} measured at discrete timgs  This index is positive iX predominantly drive¥, whereas it
from the systemsX andY, respectively, witht,=nAt, for nis negative in the opposite case. It attains values of +1 for

=1, ... N, andAt denoting the sampling interval. strictly unidirectional coupling.
When dealing with time series, however, one has to esti-
1. Phase-dynamics approach mate the coefficienta,,, bmn, €.9., via least squares. From

The first step for any phase-dynamics approach is the edhém one derives the estimatég ¢,, andd. While these
timation of instantaneous phasfs(t,)} and{¢,(t,)} from estimates become quite exact fpr very Io_ng_:_:md stationary
the time seriegx.} and{y,}. For this purpose, we applied the time serieg(1000-5000 basic period&3]), significantly bi-

R ; ; ased estimates are obtained in the case of relatively short
standard analytic signal approach using the Hilbert trans: . . o :
y g PP g time series. To remove these biases, modified estimators

form. It is important to keep in mind that phases are not well d h terizing the infl fonX and vi
defined for arbitrary signals. If, however, the dynamics ex-andyy characterizing the influence aton A and vice versa,

hibit oscillations with a single main rhythm, then the phase§65peCtively’ were proposed in R¢24]. Instead ofd the

are typically well defined. For a more thorough discussion Oiquantity 0= %y~ ¥ was proposed ibidem' Ufﬁdef the con_di-
this issue we refer to Ref§22,34). tions of weak coupling and weak nonlinearity these estima-

In order to identify the coupling direction from the phase tors are unbiased even in the case of short time seatesut

variables of two weakly coupled oscillators Rosenblum anuSO—lOO_basm per_lodsuke d, the qu_anuty6 IS positive ifX
Pikovsky proposed to test whether the future time evolutiorP.redommamly,dr'vey’ Wh.ereas It s negative in t.he OPPo-
of the phase of one oscillator is influenced by the phase 0§|te_cas_e. It differs f_rof“j in that 't. is non-normalized, re-
the other oscillatof23]. For this purpose, one constructs aS.UIt'ng n bettef statlst_|cal properties. Moreover, an expres-
global model map, which characterizes the dependence on for its confidence interval was derived analyticafty].

phase increments over a finite time intervabn the phases n the present study we W'". use the charactens&@s a
themselves. in the form representative phase-dynamics approach to coupling direc-

tion identification.
_ _ As indicated above, a reliable detection of the coupling
A+ 1) = 0 = P D), (1) + &), @ direction can only be achieved in the nonsynchronous re-
gime. If the coupling is strong enough to induce synchroni-
By (t+ 1) = hy(t) = Fy(ehy(1), (1)) + &(1), (2 zation, then the information about the coupling direction is
lost and the indices introduced above can have arbitrary val-
where ¢, ,(t) are unwrapped phases agid, are zero-mean yes that are not related to the coupling intensity and direc-
random processes, is a trigonometric polynomial of the tion. Hence, it is important to determine the overall degree of
form correlation between the phases of the two dynamics. For this
purpose we applied the mean phase cohergh6g(cf. also

F(¢o dy) = 2 [8mn COSM, +Neby) + by sin(me, +npy)]. Ref.[11]):

R=(cog by — )2 + (sin(¢b — )2, (6)

(3
) where angle brackets denote averaging over time. It is sym-
F, is defined analogously. These equations are the differenametric in x andy, attains the value oR=1 for the case of
form of rather universal stochastic differential equationscomplete phase synchronizatiof,— ¢,=cons} and tends to
[35], which describe the evolution of coupled phasezero for independent oscillators. Here we restricted ourselves
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to the simple case of 1:1 phase synchronization, which isinsynchronized regime. To briefly motivate this relation we

appropriate for all examples analyzed in this study.

2. State-space approach

closely follow Refs.[10,25: In the case of unidirectional
couplingX—Y we havey,,;=F(x,,Y,). If there is no noise
and the coupling is nonsingulédet dF;/ dx,) # 0], then this

For the implementation of the state-space approach, it igelation can be inverte¢ht least locally and can be written
at first necessary to reconstruct the dynamics from the twasx, =G(y,,,y,.;) or, after increasing the embedding dimen-

scalar time series. We used delay coordinfB&s

Xn= [Xm (R 1Xn—(m—1)r,]v

7
Yn=[Yn -

with an embedding dimensiom=10 and a delay timer,
=12 forn=1,... N" with N"=N-(m-1)7,.

Letry; ands,;, j=1,...
g=>5 nearest Euclidean neighbors xfe X and ofy, e,

1yn—(m—l) 7-,] ’

g denote the time indices of the

sion of Y, asx,=¢(y,). Hence, closeness in the response
implies closeness in the driver, ahtiX|Y) attains high val-
ues. The opposite relation,=W¥(x,,) holds only for the syn-
chronous motioriby definition. For the unsynchronized mo-
tion closeness in the driver does not necessarily imply
closeness in the response, addY|X) attains low values.
Therefore, for the unsynchronized motion with a weak uni-
directional coupling fromX to Y we obtain H(X|Y)
>H(Y|X) andH>0. In the present study we used the char-

respectively. Temporally correlated neighbors are exclude@CteristicH as a representative state-space approach to cou-

by means of a Theiler correctid®7]: |r,;—n|>W and|s,

-n|>W with W=50. For eacly,, the mean-squared Euclid-

ean distance to itg nearest neighbors is given by

1 q
RN = S o=y, ®)
=1 '

and the X-conditioned mean-squared Euclidean distance

defined by replacing,; with rp;

q
1
RYCYX) = 2y =y, | )
=1 ‘

The averaged squared distanceygpto all remaining points
in {y,} is given by

*

N

> ey

N - 1j:1,j#n

R,(Y) = (10)

If the dynamics ofY is independent oK, then there is no
particular relation between,; ands, ;, and
Ry(Y) =~ RO(Y|X) > R(Y) (12)

holds. In contrast, if closeness Kimplies closeness i,
then it follows

R(Y) > RP(Y|X) = RO(Y). (12)

Based on these considerations Arnhetdal. [10] defined
[38]

1Y R

If relation (11) holds then it follows thatH(Y|X)—0,
whereas higher values bf(Y|X) are obtained if relatiofl2)
is true. The quantityd(X|Y) is defined by exchanging and
Y in Eq. (13) in order to test whether closenessYinimplies
closeness irX. We here use the antisymmetrized quantity

H =H(X]Y) - H(Y|X) (14)

H(YIX) = (13)

pling direction identification.
As a counterpart to the mean phase coherence we used the
symmetrized quantity

S:mmw;mey 5

to quantify the overall strength of interdependence.
Is

B. Exemplary mathematical systems

We analyzed five different exemplary mathematical sys-
tems to explore the strengths and weaknesses of our two
techniques. Our first two examples are given by unidirection-
ally coupled Roéssler dynamigsf. [39—-41):

X1 =~ 0Xo ~ Xg+ ex(Y1 = %),
Ko = wXg + 0.15¢,
X3=(Xg = C)X3+ 0.2,
Y1= - oyr Y3+ ey(X ~ Y1),
Y2 = wyy;, +0.15/;,

Y3=(y1—Cy)ys+0.2. (16)

Values of the parameters, ,, &, andc,, are specified be-
low. Equations(16) were integrated using the standard
fourth-order Runge-Kutta routine with a step size of 0.05 and
a sampling interval ofAt=0.3. Time series of th&, andy,
coordinates were taken as observables. For weak coupling
the phases for these variables are well defined.

For the first example we used almost identical unidirec-
tionally coupled Raéssler dynamics;=c,=10, &,=0, £,>0
with a frequency mismatch defined byw, =15 v. Except
for a narrow range of the frequency mismatch both the driver
and response dynamics are in a chaotic regime, and Zheng
and Hu reported that qualitatively different transitions from
the unsynchronized to the synchronized motion take place

to test for asymmetric driver-response relationships. It attainghen the coupling, is increased41]. For small values of

positive values for unidirectional coupling frokto Y in the

the frequency mismatckw<0.028 phase synchronization
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comes first, followed by generalized synchronization. In any as observables. The predominant coupling direction de-
intermediate rang€0.028< »<0.035 both synchronization pends on the value of. Different noise intensitie® were
forms arise at the same value of the coupling. For strongeused to study different relative degrees of determinism ver-
detuning(0.035< v) generalized synchronization sets in first, sus stochasticity and, in particular, different strengths of
while phase synchronization is observed at a stronger coyphase diffusion. At all values db, however, the calculated
pling. phases were well defined, i.e., phase jumps byr afere

For the second example we used significantly differen@bsent or very rare. This example allows us to test whether
Réssler dynamic,=10,¢,=2, wy=1.0,w,=0.98. For these our techniques are also applicable to detect asymmetries of
parameters th¥ dynamics is chaotic, and thédynamics is  bidirectional coupling rather than only the direction of uni-
periodic. We considered both directions of unidirectionaldirectional coupling.
driving, £,=0, &,>0, as well as,>0, &,=0. The fifth dynamics are constituted by two structurally dif-

As the third example, we studied nonidentical unidirec-ferent systems, namely, a Rossler system and a stochastic
tionally coupled Lorenz dynamics. We used the standardan der Pol oscillator
fourth-order Runge-Kutta routine with a step size of 0.005

and a sampling interval dft=0.03 to integrate the equations X1=7X X,
X = 100X = Xq), Xo =X, +0.15 + £,y,
).(2:40(1—X2—X1X3, 5(3:(X1_ 10)X3+O.2,
Lo 8 . .
X3—X1X2_ §X3, y= 01(1 _yZ)y_ w§y+ §y+8yX21 (19)

. where w,=0.98, ¢, is Gaussian white noise with correlation

= - — y 15y —_—

Y= 1002 =yy) + el =y, function (£,(t)£,(t))=2D&(t-t'), v2D=0.05. The equations
=35y, v, — were integrated using the Euler scheme with a step size of
Y2= 317 Y2~ Yaya, /3000 and a sampling interval of Grl The variablesx;

] 8 andy were used as observables. We considered both direc-
Y3=Y1¥2~ 3Ys. (17 tions of unidirectional coupling, that is, >0, g,=0 as well

Here, depending on the observable we use, we are co@S &x=0, ey=>0. We did not cc_;nsidc_er bi_dire(_:tiqnal C(_)upling
fronted with situations of well-defined, “almost well’- because the notion of coupling direction is ill defined for

defined, or ill-defined phases. The variablgs andy; , do structurally different bidirectionally coupled subsystems.
not exr;ibit an oscillatory béhavior with a singlléz main Before we leave this section we shall recapitulate that we

thythm, and the phase is not well defined for these signald!S€d Sampling intervals equal to about 0.05 basic periods of
One can still apply the analytic signal approach but ends up'@ eSPective systems’ oscillations. Hence, we used time se-

with some meaningless quantities. The extracted phra;,lezs ”ﬁsd with z_appermma(;_elylzof dattha p0||nts| pt_er b;S'C g;”Od for
and ¢y12 do not exhibit a pronounced linear trend, show &' dynamics. Accordingly, for the caiculation bf and o we

¢ 2. f 2 ( dina 1o | £ th used the same parameters for all dynantgee above We
lrf_que_n Jl:r?ﬁst Od . tcorrelspontr:ng 0 .OOpfStﬁ € anla- deliberately did not optimize these parameters for the respec-
yuc signat that do not enclose the origin or the COmpIeX ;.. dynamics to simulate the absenceagdriori information
plane, and certainly do not reflect a phase of the underlyin

%bout the underlying dynamics and to avoid in-sample opti-
dynam|cs_.t0ndthe other hand, l_JS“%andI)l’lda?_ Objer;]’ablesthnt]ization. If not stated explicitly otherwise, we used
one can introduce some meaningiul well-delined phases thaly 4 9o gata pointsi.e., about 500 basic periodsor all

are related to the oscillations around the unstable fixed pomt&ynamics

in the two “wings” of the Lorenz attract¢#2]. The variables '

X3 andys; exhibit chaotically modulated oscillations. The ex-

tracted phasessbx3 and ¢y, are almost well defined in the C. Quantification of the methods’ sensitivity

sense that they exhibit only rare jumps ofz2 As described in Sec. Il A5 and H are constructed to

As the fourth example we used bidirectionally coupleditain positive values for driver-response relationships with
stochastic van der Pol oscillators with a slight mismatch ofyirection X—Y, while zero values should be obtained for
the mean frequencies, and w, uncoupled dynamics. For an ensemble of finite realizations

%=0.21 —x2)X — wX + &, + 0.0y - X), of uncoupled dynamics one, of course, cannot expect values
2 X~ @t & dy=x) of exactly zero but rather values distributed according to cer-
. e 2 _ tain probability distributionSpg(x) and pg(x) centered at
y=02A1-y)y - wjy+§+ex-y), 18 ero. That is/xph (x)dx= [xp3(x)dx=0. For the coupled case
where 0,=1.02, 0y=0.98, and¢, and &, are independent (say, unidirectional couplingK—Y of the strengthe), one
Gaussian white noises with correlation functionsexpects probability diStI’ibUtiOﬂSsH and pf shifted toward
(EDEM)=(§(D&,(t"))=2Ds(t-t'). We integrated the higher vaIuesJXpSH(x)dx>0 andIpr(x)dx> 0. In order to
equations using the Euler scheme with a step size ofi0.01quantify and compare the capability éfand H to detect
and a sampling interval of Orland used the variablesand  weak couplings, we have to determine the values ait
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which pf(x) and p2(x) are significantly different fromp(x) initial amplitudes. With the evolution of the dynamics the
and pg(X), respectively. This will be done in the following initially identical phases will diffuse due to the effective
straightforward way(see also Fig. )L noise caused by the stochastic or chaotic nature of the dy-
The probability that a random sample fropﬂ(x) has a hamics. The rate of this phase diffusion can be quantified in
higher Va'ue OH than a random Samp'e fropg'(x) is given the fO”OWing Straightforward Wa.y. For the |n|t|a| State the
by distribution of the phases has zero variar[oe;s(tzo):od,o
. , =0]. With progressing time the variance grows, and for small
Heoy — oyt | Hown g times this growth can be fitted hyf,(t) = ct. The quantity 2
P(e) f_m lf po(X')x ]ps (). (20 is called the phase diffusion coe?%icie[rﬂs].
. . In our context there is another quite straightforward way
By construction we gep™(0)=0.5, and values of 10) are g estimate the phase diffusion coefficient: As a byproduct of
obtained if every value fronp;'(x) is greater(less than ev-  the evolution map approach, it can readily be estimated from
ery value frompj(x). These cases of nonoverlapping distri- the residuals of the reconstructed model equations. For the
butions correspond to an unambiguous discrimination of th&incoupled case we approximate the dependence of the phase
coupled and uncoupled dynamiets]. The increase of'(¢)  incrementg(t+17) - &(t) on its phasep(t) by a functionF(¢).
for low values ofe reflects the sensitivity oH for these  This is done by minimizing the mean-squared erigr
weak couplings(cf. Fig. 1). The crossing of the threshold =([(t+7) - ¢(t)—F(¢(1))]?). The minimum ofo? is an esti-
p"(e95)=0.95 defines the value of the coupling at which wemate of the phase variance increment over the time interval
have a 5% probability to obtain a lower value for the coupled;: afninch_ As stated beforer is approximately one basic
dynamics—an error probability commonly used as a threshperiod. We quantified the phase diffusion directly by the
old of significance. The analogous procedure is usedsfor value 2., which represents the phase diffusion coefficient
and thesensitivity thresholds:g; and e; can be used to multiplied by one basic period and divided by45]. For all
quantify and compare the sensitivity of the two measures foglynamics investigated here these values are listed in Table I.
weak couplings with directioi)X—Y [44]. If not stated ex-
plicitly otherwise, we estimated the values pf(s) and
p°(e) using ensembles of 100 time series with initial condi- lll. RESULTS
tions distributed according to the natural invariant measure

—o0

"A. Unidirectionally coupled almost identical Réssler dynamics

Figure 1 shows results obtained for the almost identical
D. Estimation of phase diffusion Rossler dynamicg»=0.03 N=10 000. Both & and H cor-

A characteristic feature of oscillatory processes, whichrectly identify the weak unidirectional coupling between the
will turn out to be very important in our context, is the two chaotic oscillators: Both measures attain values distrib-
strength of the phase diffusion. We here briefly recall thisuted around zero for the uncoupled case and attain positive
notion and present our way of estimating a phase diffusiorvalues for nonzero couplings. In consequence, hwiiz)
coefficient. Consider an ensemble of stochastic or chaotiandp™(e) grow from 0.5 to 1. However, the increasepstz)
oscillators with the same initial phase but possibly differentversuse is faster than the one gf(e) resulting in 835
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TABLE . Typical values of the phase diffusion strengt,, for

individual uncoupled systems and relative performance of the two
approaches foN=10 000.
Systems o2 Superiority
Roéssler 0.05 dis better
Lorenz 0.8 H is better
van der Pol2D=0.01 0.00008 8is better
van der Pol2D=0.05 0.0017 dis better
van der Pol,\s‘“@:O.l 0.0068 dis better e 1(')4 10°
van der Pol,y2D=0.2 0.03 H is slightly better N
van der Poly2D=0.4 0.15 H is slightly better
van der Pol,2D=0.8 09 Sis better FIG. 3. Dependence ofy; (triangles and &5 (circles on the

number of data points for the Rdssler dynamics with a frequency
mismatch ofr=0.03.
<ebt. In consequence, for the given time series length and
frequency mismatch of the Rdssler dynamics, the sensitivithigh values of the frequency mismatéhis superior toé.
of & is higher than the one dfi. The upper panel of Fig. 2 The respective ranges of the frequency mismatch approxi-
shows that this holds true for the whole range of frequencymately match those belonging to the different synchroniza-
mismatch investigated here. Hence, for the Réssler dynamiason transitions reported in Reff41] and given in Sec. Il B.
with a well-defined phase the phase-dynamics apprédch This might suggest a relation between the kind of synchro-
appears superior to the state-space approégh nization transition and the superiority of the one or the other
A different picture, however, is obtained for longer time method. However, it is important to recall that the curves in
series(cf. Fig. 3. The measure is superior toH only for  the upper panel of Fig. 2 do not intersect. Furthermore, if we
short and moderate time series length, while it loses its suwould use some other representative phase-dynamics and/or
periority for very long time series. Hence, here we observe state-space measures insteaddaind H, respectively, or if
superiority of H despite that the phases are well defined.we would use different parameters férand H, then the
Furthermore, a view to the sensitivity thresholds obtained focurves shown in the lower panel of Fig. 2 might well be
N=100 000 data points under variation of the frequency misshifted and have different forms. Therefore, the relation and
match(Fig. 2, lower panelshows that for this length of the the relative performance of our two measures should be re-
time series, the measu®is superior toH for small fre- garded as a very subtle factor that deserves further studies.
quency mismatches. For an intermediate range of both For the frequency mismatch af=0.015 an outstanding
measures have approximately the same sensitivity, and fdrigh value forel; is found. For an approximate range of
0.011<»<0.021 the dynamics of the drive system exhibits
0.005 — ; : ; ; a periodic solution(results not shown In consequence, the
| ‘\V/‘\\—’A, | response also passes through periodic windows with increas-
ing coupling strength, starting at couplings as low as
Soosr v——_ " v 1  =0.07[46]. At even lower couplings the measureencoun-
ters difficulties to detect the coupling direction for this ex-
ample of a chaotic Réssler dynamics driven by a periodic
0.001 1 1 one.
To compare the robustness 6fand H against observa-
001 002 003 004 005 006 tional noise we superimposed the driver and response dy-
v namics of the almost identical Rossler dynamfes0.03
with uncorrelated additive Gaussian noise and calculated the
sensitivity thresholds of both measures for different noise

0.002¢ 1 levels. The latter was quantified using the ratio of the vari-
ances
o
wm 2
0.001 1 1 o2
§: ;Olse. (21)
Usignal

An increase in the values @f of course, leads to increas-
001 002 003 004 005 006 ing values of botted; and e, and only up to certain maxi-
v mal noise levels is the sensitivity threshold reached at all.
FIG. 2. Dependence ofjs (triangles and b (circles on the ~ Only up to thesety,, the respective measure allows distin-
frequency mismatch of the Réssler dynamics fo¥=10 000(up-  guishing the coupled from the uncoupled case. From the up-
per panel and N=100 000(lower pane). per panel of Fig. 4 it becomes evident tlivhis substantially
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107" = _ ; — shows, according to expectation, that the sensitivity of both
i il approaches is increased again due to the filtering, but also
after the filteringH is more robust against noise.

Before we proceed to results obtained for the other dy-
namical systems we would like to illustrate the principal
limitation of the applicability of bothS andH to the nonsyn-
chronous motion. In Fig. 5 the curves pi(e) andp™(s) for
the Rossler dynamics are shown for a much wider range of
the coupling strength. As indicated by the increase of the
mean phase coherence and the overall nonlinear interdepen-
denceH,, the transition to synchronizatiofboth phase and
generalized onetakes place at the coupling strength ©f
~0.08. At this transition bottp®(e) and p"() drop from
values of 1 to 0; at even higher values of the coupling, both
curves rise again. This example shows that a reliable charac-
terization of the coupling direction cannot be obtained in the
synchronous regime of the dynamics or close to it.

B. Unidirectionally coupled Lorenz dynamics

107 5 IR SRR For the Lorenz dynamics the sensitivity bf for weak
1072 10~ 10° directional couplings is higher than the one&rfegardless of
£ what variable is used for the calculatidkig. 6). For the

observables;, y;, the phase-dynamics approach cannot de-
FIG. 4. Dependence of2. (triangles and k. (circles on the tect the cogp!lng at all; it does not rea(;h thg sensitivity
amplitude of superimposed noise for the Rossler dynamics threshold within the range of the coupling investigated here.

=0.03. In the upper(lower) panel results are shown for unfiltered This finding is in accordance with expectation if we recall
(filtered) time series. that here the phases extracted freprandy; via the analytic

signal approach are ill defined. In contrast, the state-space
more robust against uncorrelated Gaussian noise. AIthoug@pproaCh has the highest sensitivity for the observatles
H reaches the sensitivity threshold for values of upitg,  (e65=0.58. For the observables;, ys, for which the phases
=1, the measuré does so only up t@&,=0.1. In the next are almost well definedj can detect the directional coupling
step we first filtered the noisy signals using a low-pass butbut it is S|gn|f|cantly less sensitive tha (s55=6.50 versus
terworth filter with a cutoff frequency of one-fifth of the ef;=1.41). Forx3, y4, for which the phases are well defined,
signals’ bandwidth, i.e., approximately twice the mean fre-the phase-dynamics approach becomes more sensitive but is
quency of the Rossler dynamics. The lower panel of Fig. 4still far less sensitive than the state-space apprdaéh

1 . - 6

05} - o S PR T

FIG. 5. Upper row: Mean phase coherence
(left) and Hg (right) versus the coupling strength
e of the Rossler dynamicéN=10 000,»=0.03.
Lower row: p%(e) (left) and p™(e) (right). Note
that the leftmost part of the lower curves is also
shown in Fig. 1.

o 05
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FIG. 6. Values ofp’(e) (triangles and p™(g) (circles for the
Lorenz dynamics obtained for the variableg y; (top), X3, Y3
(middle), andx3, y3 (bottor).
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=4.56 versusgs=1.31). Hence, even if the phases are well
defined and the time series length is modefate 10 000 a
higher sensitivity of the state-space approach is observed.
This finding can be explained by the very strong phase dif-
fusion of the Lorenz dynamidgf. Table ), which apparently
strongly reduces the performance of the phase-dynamics
approach.

C. Bidirectionally coupled stochastic van der Pol oscillators

The dependencies af5:' on the noise level2D of the
coupled van der Pol oscillators along wiph™ () curves for
three exemplary noise levels are depictedfig. 7 [47]).
Values ofeds rise monotonically with the noise level, i.e., the
sensitivity decreases monotonically. As to be expected, the
phase diffusion coefficients also increase with increasing
noise levelg(cf. Table ), again showing a strong impact of
the phase diffusion on the performancesoffhe dependence
of e on the noise level is considerably more complicated.
First of all, it exhibits a distinct minimum, the highest sen-
sitivity is not obtained for the lowest noise level. We report
here that a closer look oH(X|Y) and H(Y|X) reveals the
reason for this findingresults not shown For the lowest
noise level investigated hef¢2D=0.01), we, indeed, obtain
the results that we expect for the unsynchronized motion:
HX|Y)>H(Y|X)O H<0 for £<0.03 and H(Y|X)
>H(X|Y)O H>0 for £>0.03. However, values of both
H(X|Y) and H(Y|X) attain almost maximal values through-
out the range of the coupling [48]. In consequence, their
differenceH remains quite small and the sensitivity for weak
directional couplings is rather low. With increasing noise the
saturation ofH(Y|X) and H(X|Y) diminishes. On the other
hand, the additional noise increasingly disturbs the determin-
istic structure of the oscillator. While the first effect increases
the sensitivity ofH, the latter decreases it, resulting in the

FIG. 7. Upper row and left panel of lower
row: values of p%e) (triangles and p'(s)

. 0.2 (circles for the van der Pol dynamics obtained
€ for different noise levels. From left to right and
from top to bottomy2D=0.01, 0.4, and 0.8. The
1 L ’/":"' RN 0.06 7 vertical dashed lines mark the symmetrical cou-
LY / pling (¢=0.03. Right panel of lower row: De-
”""/: """""""""""" / pendence of sensitivity thresholdg; (triangles
. I/ - / and el (circles on the noise level.
IR A S /
I RSO 0.02 7
TR AR Y
|
0 ' : : 0
0 0.1 0.2 107 107" 10°
e 2D1/2
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pS,H
pB,H

05p" ST S,

FIG. 8. Results obtained for
the Rossler dynamics with signifi-
cantly different parameters for
both coupling directions. Upper
four panels:X—Y, for this cou-
pling direction we expecgpositive
values of § and H. Correspond-
ingly we have to usegs as sensi-
tivity threshold. Lower four pan-
els: Y—X, for this coupling
direction we expechegativeval-
ues of § andH. Correspondingly,
we have to uses as sensitivity
b threshold. First and third row:
p2H. Second and fourth row:

poH(e)

0 0.0005 0.001
€

0.001 : : : 0.0005 -

« 0.0005¢

—-0.0005 4 ; ;
0 0.01 0.02

minimum of the dependence efy' on the noise level cor- butionspg and ply are not centered at zero but rather shifted
responding to an optimal noise level. For noise levels sometoward positive and negative values, respectively. For the
what above this minimum the state-space approach becomeseasures confidence bands were derived in REZ4] that
slightly superior to the phase-dynamics appro@8l. For  readily allow one to reveal the nonsignificance of these non-
the highest noise level investigated hér@D=0.8), how-  zero values(results not shown However, no such confi-
ever,H does not reach the sensitivity threshold any moredence bands exist fdd, and here only the use of bivariate
whereaso still allows one to correctly determine the cou- syrrogate time serig§0-52 could help to rule out spurious

pling direction. conclusions about the presence and/or direction of a cou-
. o ) . pling. In any case, due to the shifted reference distributions
D. Couplings between significantly different dynamics the judgement of the measures’ sensitivity becomes rather

Thus far we considered only cases of couplings betweefroblematic. If we proceed, nonetheless, we can see that for
slightly different dynamics, where the notion of predominantthe driving directionX— Y the measured attains positive
coupling direction could readily be introduced even for bidi- values and formally has a very high sensitivity that even
rectional coupling. We now address the applicability of oursurpasses the one @f For the opposite driving direction,
techniques to couplings between significantly different dy-however, the curvepf(e) first crosses the value of 0.95,
namics. Here we only consider unidirectional coupling be-falsely indicating a coupling fronX—Y. This is in some
cause the notion of coupling direction is ill defined for struc-analogy to results obtained for the periodic regime of the
turally different bidirectionally coupled subsystems. Resultsdriver of the almost identical Réssler dynamics; agdien-
obtained for the significantly different Rossler dynamics arecounters difficulties for a chaotic Rossler dynamics driven by
shown in Fig. 8. We recall that here tiedynamics is cha- a periodic one. Regarding only the curvespgfsuggests that
otic, and theY dynamics is periodic. Thus, the phase diffu- the measuré correctly detects both driving directions. How-
sion coefficient is exactly zero for thé dynamics(not in-  ever, looking atpg for the Y — X we see that positive values
cluded in Table). of & are obtained up to a quite high value ©£0.015. We

First of all, it is important to note that values Bfandé  note that also this bias turns out to be insignificant with
obtained for the uncoupled dynamics are biased: The distriregard to the confidence bands &f
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0.00075 . 1 . 0.0005 -

FIG. 9. Analogous to Fig. 8

: but for the unidirectionally
0.0005

0.000251}: - -

coupled Réssler—van der Pol dy-
© ; : : : i ‘ namics. Upper four panels van der
0.00025}F - - T e SR ol Pol oscillator is driving the
‘ : : : : Rossler dynamicge,=0,Y— X).
; : : : : : , : Lower four panels: Rossler dy-
ol . : . -0.00025L : : ; namics is driving the van der Pol
0 0.(2:005 0.001 0 0é01 0.02 oscillator (,=0,X—Y).
y X
0.47
T T ik
-0.4% : : :
0.001 0 0.01 0.02

In summary, these results reveal some caveats in the aptate-space approac¢bharacteristidd) and a representative
plication of both measures to couplings between significantlyphase-dynamics approadicharacteristicé). We analyzed
different dynamics. Therefore, in applications to real-worldseveral exemplary mathematical model systems and also
dynamics, which are often significantly different, one has toanalyzed the influence of observational noise and the time
be very careful with the conclusion of a predominant drivingseries length on the performance of the two approaches.
direction derived from absolute values &&ndH. Nonethe- First of all, we would like to recapitulate that a well-
less, relative changes of these measures could be used defined phase is a prerequisite for the application of any
trace the change of the dynamics’ coupling characteristics iphase-dynamics approach. If no meaningful phase can be
the course of time or under the change of some parameter eftracted, then one should only apply a state-space approach.
the dynamics. We used different observables from the Lorenz dynamics to

The results obtained for the van der Pol-Rdssler dynami|ustrate this evident fact. Our results, however, indicate also
ics, two structurally different dynamlcs are shown in Fig. 9.that a well-defined phase does not necessarily result in the
Looking at the curves ofg", we see that both measures superiority of the phase-dynamics approach. In contrast, we
correctly detect both driving directions and that a little higherprovided various examples for which we obtained superiority
sensitivity is obtained fors. This finding is in accordance of the state-space approach for dynamics with well-defined
with results for the other systems with low phase diffusion.phases.

However, we should note again that in this case the values of As a very crucial influencing factor, we could single out

6 obtained for the uncoupled dynamics are positively biasedhe strength of the phase diffusion. The comparison of the

whereas values dfi are distributed around zero. Again the Rgssler dynamics and the different observables of the Lorenz

confidence bands afreveal the nonsignificance of this posi- dynamics, as well as the variation of the noise level in the

tive bias(results not shown van der Pol dynamics clearly revealed the lower the phase

diffusion, the more sensitive is the phase-dynamics ap-
IV. DISCUSSION proach. For the state-space approach, the situation is a bit

We presented a detailed comparison of two approaches tmore complicated and one has to distinguish between phase
the detection of weak directional couplings, a representativeiffusion caused by deterministic chaotic and stochastic dy-
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namics. The former does not reduce the sensitivity of the Let us finally note that there are some differences between
state-space approackee again the almost identical Rosslerthe two representative techniques considered. The phase-
and Lorenz dynamigs Stochasticity, however, generally dynamics approach used here is based on a parametric rep-
lowers the sensitivity oH to detect interrelations between resentation of the systems under study, whereas the state-
the two dynamicgsee again coupled van der Pol dynamicsspace approach is nonparametric. This asymmetry was not
and the coupled van der Pol-Réssler dynajmios the other  introduced by us artificially but corresponds well to the un-
hand, we observed an intermediate level of dynamical noisderlying ideas of both approaches. The parametric represen-
in the coupled van der Pol dynamics for which the statetation of the phase dynami¢&igonometric polynomialsis
space approach was approximately as sensitive as the phasgtite universal and flexible because of the physical con-
dynamics approach or even slightly superior to it despite atraint of the phase variable; the dependence on the phase
comparably low phase diffusion. The superiority of one ormust be 2r periodic. Therefore, the choice of trigonometric
the other approach probably depends on how the noise jgolynomials is very natural. One could use a nonparametric
“distributed” among the dynamics of phases and amplitudesapproach to model the phase dynamics as well, e.g., local
The second factor that is very important is observationalinear modelg6], but it can be argued that such an approach
noise. By considering noisy time series from the coupledvould give approximately the same results and would be
Rossler systems, we found the state-space approach to b®re vulnerable to noise and dependent on the time series
considerably more robust against observational noise thaength. As for the state-space approach, one could not readily
the phase-dynamics approach. At the first glance, this can hese a parametric approach insteadHobecause there is no
regarded as a surprising result because one could expect thggneral way to parametrize arbitrary multivariate dependen-
the extraction of the phase acts as an effective filtering. Howeies. Furthermore, it should be noted that the meastests
ever, with an increasing level of observational noise, spurifor the influence of present phase values of one dynamics on
ous jumps of the calculated phase bymBecome more future phase values of the other dynamics. In contrast, the
frequent, significantly affecting the performance of themeasureH only evaluates present states of simultaneous
phase-dynamics approaf5a]. o space vectors. Therefore, at first sight it appears more logical
On the same example of the almost identical coupleds compares to a mutual prediction error schenfg] that

Rossler dynamics, we studied the influence of the time seriegis jncorporates the future evolution of state-space trajecto-
length, which turned out to be the third very important factor jos - However, in delay coordinates the information about

Auture state-space vectors is incorporated by simply choosing

to recall that the measutg¢ is calculated with a fixed number long delay window. The information given by a present

of nearest neighbors. Under an increase in the time serie . : )
length, these neighbors will, on average, be found in shorteprate-space vector and its future states is basically the same

distances to the reference points. Closer neighbors are bettd? the present state-space vector with a Ionggr de!ay window.
suited to characterize the dynamics in the vicinity of theHence, the information about future values is implicitly used

reference point, resulting in a higher sensitivity lf This  for H, and, with the parameters specified above, we expect it
distance scales a$°, whereD is the fractal dimension of O give basically the same results as a mutual prediction
the attractor. As for the phase-dynamics approach, the stagcheme. Furthermore, the meastteappears conceptually
dard deviation of the estimat®scales ad\ ™1 [24], and it can more straightforward as has less parameters than a mutual
be shown that the sensitivity threshold for lafgenust scale  prediction scheme, and no specific predictive mogeg.,
approximately according to the same law. The first effecfocally constant versus locally lingahas to be chosen.
appears more dominant as we found the sensitivitid db For the three main factors isolated here one can conclude
increase more significantly with the time series length tharthat the phase-dynamics approach appears superior generally
the one of$, and we can conjecture that this effect will be if the phase diffusion is weak, observational noise level is
even more pronounced for higher dimensional dynamicsow, and the time series are not very long. Otherwise, the
[54]. state-space approach appears superior. However, the relative
Moreover, in case of very long time series one can obperformance of the approaches is influenced also by some
serve some more subtle factors influencing the performancaore subtle factors such as stochastic or deterministic nature
of the techniques. Our results obtained for the almost identief the phase diffusion and the kind of transition to synchro-
cal Rossler dynamics suggest that, depending on the form afization regimes with increase in coupling strength. Thus,
the transition to the synchronous motion, qualitatively differ-neither of the two approaches investigated here is generally
ent precursors are present in the properties of the dynamisiperior to the other, but rather both have their specific
of the driven system at very weak couplings. These differenstrengths and weaknesses. In applications to experimental
precursors can be detected best using a phase-dynamics &jpae series one should, therefore, not fagopriori one or
proach(if phase synchronization comes first with an increasethe other approach but rather consider applying both tech-
in coupling strengthor a state-space approatitherwise. niques. It is probably the combination of information from
Certainly, the mechanism underlying the different transitionsboth techniques that allows the most comprehensive and re-
to synchronization are not completely understood, and wdiable characterization of unknown dynamics.
shall emphasize the limited conclusiveness of our results for An investigation of real-world dynamics, such as neuronal
this context. Doubtless, this interplay of generalized synchrodynamics or genetic microarray-produced time series, shall
nization and phase synchronization and the different preculbe the subject of future investigations. In contrast to the
sors found in the dynamics appears very intriguing and demodels investigated here, neuronal dynamics do not repre-
serve further studies. sent pairs of coupled but nonetheless distinct and self-
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sustained oscillators. Rather, time series measured from tH21,55 and references thergirFinally, a comparison against
brain, such as the electroencephalogram, always reflect thdhfferent information-theoretic approaches based on recon-
interaction of millions of individual units organized as qua- structed state spacfs6] and/or phasels’] should also be the
sicontinuous networks. Due to the superposition of an unsubject of future investigations.

counted number of degrees of freedom, even the reconstruc-
tion of the dynamics using delay coordinates and the
estimation of the phase using the Hilbert transform can be
problematic. For this reason it is sometimes argued that mea- The authors are grateful to B. Bezruchko, P. Grassberger,
sures such ag or H should not be applied to neuronal dy- A. Kraskov, T. Kreuz, and S. Astakhov for fruitful discus-
namics because the underlying assumptions are violatedions of this work. D.A.S acknowledges financial support
However, the complementary point of view, which we sharefrom the President of Russi@&rant No. MK-1067.2004.,2

is that, in particular, these complicated properties make neuRussian Science Support Foundation, program BRRIEC-
ronal dynamics a very interesting field of application, and006), and RFBR(Grant No. 05-02-16305and the kind hos-
recent studies show that such applications can indeed copitality of the John von Neumann-Institute for Computing at
tribute to our understanding of the braisee, for example, the Research Center Juelich.
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