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We compare two conceptually different approaches to the detection of weak directional couplings between
two oscillatory systems from bivariate time series. The first approach is based on the analysis of the systems’
phase dynamics, whereas the other one tests for interdependencies in the reconstructed state spaces of the
systems. We analyze the sensitivity of both techniques to weak couplings in numerical experiments by con-
sidering couplings between almost identical as well as between significantly different nonlinear systems. We
study different degrees of phase diffusion, test the robustness of the two techniques against observational noise,
and investigate the influence of the time series length. Our results show that none of the two approaches is
generally superior to the other, and we conclude that it is probably the combination of both techniques that
would allow the most comprehensive and reliable characterization of coupled systems.
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I. INTRODUCTION

The complex interplay of dynamical systems results in a
rich variety of synchronization phenomena. While often the
unidirectionality of the underlying interactions is evident, bi-
directional interactions appear indispensable for the func-
tioning of other dynamics. For a wide variety of dynamics
the type and direction of driving, however, cannot be de-
duceda priori. In particular, this problem often arises in the
analysis of interactions in climatic processesf1g, electric cir-
cuits f2g, neuronlike oscillatorsf3–5g, and physiological sys-
tems, such as the human cardiorespiratory systemf6,7g,
nephronsf8g, or neuronal dynamicsf9–21g. Hence, a reliable
detection ofweak directionalcouplings between two sepa-
rate dynamical systemsX andY from the analysis of pairs of
signals measured from them appears as a key to an advanced
understanding of many dynamics in nature.

Different approaches to this aim have been developed in
the framework of linear and nonlinear time series analysis
and information theory. Among the nonlinear techniques a
fundamental approach was developed for oscillatory pro-
cesses exhibiting a single pronounced main rhythm. In such
a case one can calculate instantaneous phases and amplitudes
of the oscillations from the time series using techniques such
as the analytic signal approach implemented via the Hilbert
transformf22g. Subsequently, the phase variables can be in-
vestigated for possible interrelations. If the phases are found
to be locked, phase synchronization is established indicating
a strong coupling. In this synchronous regime, however,X
andY have lost their separateness. In consequence, coupling
direction becomes nonidentifiable. Only for weaker cou-
plings, which result in unsynchronized motions, a reliable
identification of the coupling direction can be achieved using
the phase variables. For this purpose, Rosenblum and Pik-
ovsky proposed to reconstruct model equations for the phase
dynamics of the two systems in order to investigate whether
the phase dynamics of one oscillator is influenced by the

phase of the otherf23g scf. also Ref.f6gd. In its original form
the evolution map approachof Ref. f23g requires very long
time series for a reliable and unbiased detection of weak
directional couplings, but after introducing some correction
terms and confidence intervals to the coupling estimates it
was made applicable to shorter time series as wellf24g.

In a conceptually different approach, the dynamics are
assumed to evolve in some higher dimensional state space
exhibiting some deterministic and possibly chaotic motion.
Here, a reconstruction of the state vectors can be obtained by
means of delay coordinates. If the states of the response sys-
temY are related via some function to the states of the driver
systemX, i.e.,ystd=Csxstdd, one speaks of generalized syn-
chronization. From the existence ofC it follows that close
states of the drive system will typically be mapped to close
states of the response system. However, in case of general-
ized synchronizationC is likely to be bijective, and, there-
fore, also close states of the response will typically be
mapped to close states of the driving systemf25g. In analogy
to the phase-synchronized motion, the coupling direction can
only be reliably estimated for the nonsynchronous regime.
Here, closeness in the response implies closeness in the
driver predominantly. We address this point, which might
sound contraintuitive at first sight, in more detail below, and
here just note that it represents a complementary criterion for
the detection of weak directional couplings and that there
exists a whole family of state-space approaches that directly
or indirectly exploit this criterionf9,10,13,20,26–32g.

Confronted with a pair of time series measured from two
unknown dynamical systems it appears difficult to decidea
priori whether a phase dynamics approach or a state-space
approach is more appropriate for the detection of a potential
directional coupling of the dynamics. It is a well-known fact
that weak couplings typically affect the phases while the os-
cillators’ amplitudes can remain essentially uncorrelated
f33g, and one could conjecture that phase-dynamics ap-
proaches are superior to state-space approaches for any dy-
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namics for which well-defined phases exist. However, the
only way to actually test such hypotheses is to compare the
performance of phase-dynamics and state-space approaches
in a controlled setting using mathematical model systems.
This comparison was still lacking and therefore declared as
the aim of the present study. We chose the extended evolu-
tion map approach by Smirnov and Bezruchkof24g sSec.
II A 1 d as a representative phase-dynamics approach, and a
statistics by Arnholdet al. f10g sSec. II A 2d as a representa-
tive state-space approach. We applied both approaches to five
mathematical model systemssSec. II Bd to reveal the superi-
ority and inferiority of the one or the other approach in dif-
ferent settings. Our results are presented in Sec. III followed
by the discussion and conclusions in Sec. IV.

II. METHODS AND SYSTEMS

A. Methods

In the following we will assume that we deal with two
scalar time serieshxnj andhynj measured at discrete timestn
from the systemsX and Y, respectively, withtn=nDt, for n
=1, . . . ,N, andDt denoting the sampling interval.

1. Phase-dynamics approach

The first step for any phase-dynamics approach is the es-
timation of instantaneous phaseshfxstndj and hfystndj from
the time serieshxnj andhynj. For this purpose, we applied the
standard analytic signal approach using the Hilbert trans-
form. It is important to keep in mind that phases are not well
defined for arbitrary signals. If, however, the dynamics ex-
hibit oscillations with a single main rhythm, then the phases
are typically well defined. For a more thorough discussion of
this issue we refer to Refs.f22,34g.

In order to identify the coupling direction from the phase
variables of two weakly coupled oscillators Rosenblum and
Pikovsky proposed to test whether the future time evolution
of the phase of one oscillator is influenced by the phase of
the other oscillatorf23g. For this purpose, one constructs a
global model map, which characterizes the dependence of
phase increments over a finite time intervalt on the phases
themselves, in the form

fxst + td − fxstd = Fx„fxstd,fystd… + jxstd, s1d

fyst + td − fystd = Fy„fystd,fxstd… + jystd, s2d

wherefx,ystd are unwrapped phases andjx,y are zero-mean
random processes.Fx is a trigonometric polynomial of the
form

Fxsfx,fyd = o
m,n

fam,n cossmfx + nfyd + bm,n sinsmfx + nfydg.

s3d

Fy is defined analogously. These equations are the difference
form of rather universal stochastic differential equations
f35g, which describe the evolution of coupled phase

oscillators, and, despite their simplicity, reflect adequately
the properties of a wide range of oscillatory processes.
Therefore, they were chosen in Ref.f23g as a basic object to
derive coupling characteristics. Following Refs.f23,24g pre-
cisely, we used third-order polynomials forFx,y and set the
intervalt approximately equal to one basic oscillation period
for all numerical examples belowsnamely,t=20Dtd.

The strength of the influence of the systemY on the sys-
tem X is determined by the steepness of the dependence of
Fx on fy, i.e., by]Fx/]fy. Therefore, one defines

cx =
1

2p2E
0

2p E
0

2p

s]Fx/]fyd2dfxdfy. s4d

It can readily be shownf24g that

cx
2 = o

m,n
n2sam,n

2 + bm,n
2 d. s5d

Finally, the directionality index is defined asd=scy

−cxd / scx+cyd, wherecy is defined in complete analogy tocx.
This index is positive ifX predominantly drivesY, whereas it
is negative in the opposite case. It attains values of ±1 for
strictly unidirectional coupling.

When dealing with time series, however, one has to esti-
mate the coefficientsam,n, bm,n, e.g., via least squares. From

them one derives the estimatesĉx, ĉy, and d̂. While these
estimates become quite exact for very long and stationary
time seriess1000–5000 basic periodsf23gd, significantly bi-
ased estimates are obtained in the case of relatively short
time series. To remove these biases, modified estimatorsgx
andgy characterizing the influence ofY on X and vice versa,
respectively, were proposed in Ref.f24g. Instead ofd the
quantity d=gy−gx was proposed ibidem. Under the condi-
tions of weak coupling and weak nonlinearity these estima-
tors are unbiased even in the case of short time seriessabout
50–100 basic periodsd. Like d, the quantityd is positive ifX
predominantly drivesY, whereas it is negative in the oppo-
site case. It differs fromd in that it is non-normalized, re-
sulting in better statistical properties. Moreover, an expres-
sion for its confidence interval was derived analyticallyf24g.
In the present study we will use the characteristicd as a
representative phase-dynamics approach to coupling direc-
tion identification.

As indicated above, a reliable detection of the coupling
direction can only be achieved in the nonsynchronous re-
gime. If the coupling is strong enough to induce synchroni-
zation, then the information about the coupling direction is
lost and the indices introduced above can have arbitrary val-
ues that are not related to the coupling intensity and direc-
tion. Hence, it is important to determine the overall degree of
correlation between the phases of the two dynamics. For this
purpose we applied the mean phase coherencef15g scf. also
Ref. f11gd:

R= Îkcossfx − fydl2 + ksinsfx − fydl2, s6d

where angle brackets denote averaging over time. It is sym-
metric in x and y, attains the value ofR=1 for the case of
complete phase synchronizationsfx−fy=constd and tends to
zero for independent oscillators. Here we restricted ourselves
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to the simple case of 1:1 phase synchronization, which is
appropriate for all examples analyzed in this study.

2. State-space approach

For the implementation of the state-space approach, it is
at first necessary to reconstruct the dynamics from the two
scalar time series. We used delay coordinatesf36g

xn = fxn, . . . ,xn−sm−1dtr
g,

s7d
yn = fyn, . . . ,yn−sm−1dtr

g,

with an embedding dimensionm=10 and a delay timetr
=12 for n=1, . . . ,N* with N* =N−sm−1dtr.

Let rn,j andsn,j, j =1, . . . ,q denote the time indices of the
q=5 nearest Euclidean neighbors ofxnPX and of ynPY,
respectively. Temporally correlated neighbors are excluded
by means of a Theiler correctionf37g: urn,j −nu.W and usn,j
−nu.W with W=50. For eachyn, the mean-squared Euclid-
ean distance to itsq nearest neighbors is given by

Rn
sqdsYd =

1

q
o
j=1

q

uyn − ysn,j
u2, s8d

and the X-conditioned mean-squared Euclidean distance is
defined by replacingsn,j with rn,j

Rn
sqdsYuXd =

1

q
o
j=1

q

uyn − yrn,j
u2. s9d

The averaged squared distance ofyn to all remaining points
in hynj is given by

RnsYd =
1

N* − 1 o
j=1,jÞn

N*

uyn − y ju2. s10d

If the dynamics ofY is independent ofX, then there is no
particular relation betweenrn,j andsn,j, and

RnsYd < Rn
sqdsYuXd @ Rn

sqdsYd s11d

holds. In contrast, if closeness inX implies closeness inY,
then it follows

RnsYd @ Rn
sqdsYuXd < Rn

sqdsYd. s12d

Based on these considerations Arnholdet al. f10g defined
f38g

HsYuXd =
1

N* o
n=1

N*

log
RnsYd

Rn
sqdsYuXd

. s13d

If relation s11d holds then it follows thatHsYuXd→0,
whereas higher values ofHsYuXd are obtained if relations12d
is true. The quantityHsXuYd is defined by exchangingX and
Y in Eq. s13d in order to test whether closeness inY implies
closeness inX. We here use the antisymmetrized quantity

H = HsXuYd − HsYuXd s14d

to test for asymmetric driver-response relationships. It attains
positive values for unidirectional coupling fromX to Y in the

unsynchronized regime. To briefly motivate this relation we
closely follow Refs.f10,25g: In the case of unidirectional
couplingX→Y we haveyn+1=Fsxn ,ynd. If there is no noise
and the coupling is nonsingularfdets]Fi /]xndÞ0g, then this
relation can be invertedsat least locallyd and can be written
asxn=Gsyn ,yn+1d or, after increasing the embedding dimen-
sion of Y, as xn=fsynd. Hence, closeness in the response
implies closeness in the driver, andHsXuYd attains high val-
ues. The opposite relationyn=Csxnd holds only for the syn-
chronous motionsby definitiond. For the unsynchronized mo-
tion closeness in the driver does not necessarily imply
closeness in the response, andHsYuXd attains low values.
Therefore, for the unsynchronized motion with a weak uni-
directional coupling from X to Y we obtain HsXuYd
.HsYuXd andH.0. In the present study we used the char-
acteristicH as a representative state-space approach to cou-
pling direction identification.

As a counterpart to the mean phase coherence we used the
symmetrized quantity

Hs =
HsXuYd + HsYuXd

2
. s15d

to quantify the overall strength of interdependence.

B. Exemplary mathematical systems

We analyzed five different exemplary mathematical sys-
tems to explore the strengths and weaknesses of our two
techniques. Our first two examples are given by unidirection-
ally coupled Rössler dynamicsscf. f39–41gd:

ẋ1 = − vxx2 − x3 + «xsy1 − x1d,

ẋ2 = vxx1 + 0.15x2,

ẋ3 = sx1 − cxdx3 + 0.2,

ẏ1 = − vyy2 − y3 + «ysx1 − y1d,

ẏ2 = vyy1 + 0.15y2,

ẏ3 = sy1 − cydy3 + 0.2. s16d

Values of the parametersvx,y, «x,y, andcx,y are specified be-
low. Equations s16d were integrated using the standard
fourth-order Runge-Kutta routine with a step size of 0.05 and
a sampling interval ofDt=0.3. Time series of thex1 andy1
coordinates were taken as observables. For weak coupling
the phases for these variables are well defined.

For the first example we used almost identical unidirec-
tionally coupled Rössler dynamics:cx=cy=10, «x=0, «y.0
with a frequency mismatchn defined byvx,y=17n. Except
for a narrow range of the frequency mismatch both the driver
and response dynamics are in a chaotic regime, and Zheng
and Hu reported that qualitatively different transitions from
the unsynchronized to the synchronized motion take place
when the coupling«y is increasedf41g. For small values of
the frequency mismatchsn,0.028d phase synchronization
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comes first, followed by generalized synchronization. In an
intermediate ranges0.028,n,0.035d both synchronization
forms arise at the same value of the coupling. For stronger
detunings0.035,nd generalized synchronization sets in first,
while phase synchronization is observed at a stronger cou-
pling.

For the second example we used significantly different
Rössler dynamics:cx=10,cy=2, vx=1.0,vy=0.98. For these
parameters theX dynamics is chaotic, and theY dynamics is
periodic. We considered both directions of unidirectional
driving, «x=0, «y.0, as well as«x.0, «y=0.

As the third example, we studied nonidentical unidirec-
tionally coupled Lorenz dynamics. We used the standard
fourth-order Runge-Kutta routine with a step size of 0.005
and a sampling interval ofDt=0.03 to integrate the equations

ẋ1 = 10sx2 − x1d,

ẋ2 = 40x1 − x2 − x1x3,

ẋ3 = x1x2 − 8
3x3,

ẏ1 = 10sy2 − y1d + «sx1 − y1d,

ẏ2 = 35y1 − y2 − y1y3,

ẏ3 = y1y2 − 8
3y3. s17d

Here, depending on the observable we use, we are con-
fronted with situations of well-defined, “almost well”-
defined, or ill-defined phases. The variablesx1,2 andy1,2 do
not exhibit an oscillatory behavior with a single main
rhythm, and the phase is not well defined for these signals.
One can still apply the analytic signal approach but ends up
with some meaningless quantities. The extracted phasesfx1,2
and fy1,2

do not exhibit a pronounced linear trend, show
frequent jumps of ±2p scorresponding to loops of the ana-
lytic signal that do not enclose the origin of the complex
planed, and certainly do not reflect a phase of the underlying
dynamics. On the other hand, usingx1

2 andy1
2 as observables

one can introduce some meaningful well-defined phases that
are related to the oscillations around the unstable fixed points
in the two “wings” of the Lorenz attractorf42g. The variables
x3 andy3 exhibit chaotically modulated oscillations. The ex-
tracted phasesfx3

and fy3
are almost well defined in the

sense that they exhibit only rare jumps of ±2p.
As the fourth example we used bidirectionally coupled

stochastic van der Pol oscillators with a slight mismatch of
the mean frequenciesvx andvy

ẍ = 0.2s1 − x2dẋ − vx
2x + jx + 0.03sy − xd,

ÿ = 0.2s1 − y2dẏ − vy
2y + jy + «sx − yd, s18d

where vx=1.02, vy=0.98, andjx and jy are independent
Gaussian white noises with correlation functions
kjxstdjxst8dl=kjystdjyst8dl=2Ddst− t8d. We integrated the
equations using the Euler scheme with a step size of 0.01p
and a sampling interval of 0.1p and used the variablesx and

y as observables. The predominant coupling direction de-
pends on the value of«. Different noise intensitiesD were
used to study different relative degrees of determinism ver-
sus stochasticity and, in particular, different strengths of
phase diffusion. At all values ofD, however, the calculated
phases were well defined, i.e., phase jumps by ±2p were
absent or very rare. This example allows us to test whether
our techniques are also applicable to detect asymmetries of
bidirectional coupling rather than only the direction of uni-
directional coupling.

The fifth dynamics are constituted by two structurally dif-
ferent systems, namely, a Rössler system and a stochastic
van der Pol oscillator

ẋ1 = − x2 − x3,

ẋ2 = x1 + 0.15x2 + «xy,

ẋ3 = sx1 − 10dx3 + 0.2,

ÿ = 0.1s1 − y2dẏ − vy
2y + jy + «yx2, s19d

wherevy=0.98,jy is Gaussian white noise with correlation
function kjystdjyst8dl=2Ddst− t8d, Î2D=0.05. The equations
were integrated using the Euler scheme with a step size of
p /3000 and a sampling interval of 0.1p. The variablesx1
and y were used as observables. We considered both direc-
tions of unidirectional coupling, that is«x.0, «y=0 as well
as «x=0, «y.0. We did not consider bidirectional coupling
because the notion of coupling direction is ill defined for
structurally different bidirectionally coupled subsystems.

Before we leave this section we shall recapitulate that we
used sampling intervals equal to about 0.05 basic periods of
the respective systems’ oscillations. Hence, we used time se-
ries with approximately 20 data points per basic period for
all dynamics. Accordingly, for the calculation ofH andd we
used the same parameters for all dynamicsssee aboved. We
deliberately did not optimize these parameters for the respec-
tive dynamics to simulate the absence ofa priori information
about the underlying dynamics and to avoid in-sample opti-
mization. If not stated explicitly otherwise, we usedN
=10 000 data pointssi.e., about 500 basic periodsd for all
dynamics.

C. Quantification of the methods’ sensitivity

As described in Sec. II A,d and H are constructed to
attain positive values for driver-response relationships with
direction X→Y, while zero values should be obtained for
uncoupled dynamics. For an ensemble of finite realizations
of uncoupled dynamics one, of course, cannot expect values
of exactly zero but rather values distributed according to cer-
tain probability distributionsr0

Hsxd and r0
dsxd centered at

zero. That isexr0
Hsxddx=exr0

dsxddx=0. For the coupled case
ssay, unidirectional couplingX→Y of the strength«d, one
expects probability distributionsr«

H and r«
d shifted toward

higher values:exr«
Hsxddx.0 andexr«

dsxddx.0. In order to
quantify and compare the capability ofd and H to detect
weak couplings, we have to determine the values of« at
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which r«
Hsxd andr«

dsxd are significantly different fromr0
Hsxd

and r0
dsxd, respectively. This will be done in the following

straightforward wayssee also Fig. 1d.
The probability that a random sample fromr«

Hsxd has a
higher value ofH than a random sample fromr0

Hsxd is given
by

pHs«d =E
−`

` FE
−`

x9
r0

Hsx8ddx8Gr«
Hsx9ddx9. s20d

By construction we getpHs0d=0.5, and values of 1s0d are
obtained if every value fromr«

Hsxd is greaterslessd than ev-
ery value fromr0

Hsxd. These cases of nonoverlapping distri-
butions correspond to an unambiguous discrimination of the
coupled and uncoupled dynamicsf43g. The increase ofpHs«d
for low values of« reflects the sensitivity ofH for these
weak couplingsscf. Fig. 1d. The crossing of the threshold
pHs«95d=0.95 defines the value of the coupling at which we
have a 5% probability to obtain a lower value for the coupled
dynamics—an error probability commonly used as a thresh-
old of significance. The analogous procedure is used ford,
and thesensitivity thresholds«95

H and «95
d can be used to

quantify and compare the sensitivity of the two measures for
weak couplings with directionX→Y f44g. If not stated ex-
plicitly otherwise, we estimated the values ofpHs«d and
pds«d using ensembles of 100 time series with initial condi-
tions distributed according to the natural invariant measure.

D. Estimation of phase diffusion

A characteristic feature of oscillatory processes, which
will turn out to be very important in our context, is the
strength of the phase diffusion. We here briefly recall this
notion and present our way of estimating a phase diffusion
coefficient. Consider an ensemble of stochastic or chaotic
oscillators with the same initial phase but possibly different

initial amplitudes. With the evolution of the dynamics the
initially identical phases will diffuse due to the effective
noise caused by the stochastic or chaotic nature of the dy-
namics. The rate of this phase diffusion can be quantified in
the following straightforward way. For the initial state the
distribution of the phases has zero variancefsfst=0d=sf0
=0g. With progressing time the variance grows, and for small
times this growth can be fitted bysf

2std<ct. The quantity 2c
is called the phase diffusion coefficientf33g.

In our context there is another quite straightforward way
to estimate the phase diffusion coefficient: As a byproduct of
the evolution map approach, it can readily be estimated from
the residuals of the reconstructed model equations. For the
uncoupled case we approximate the dependence of the phase
incrementfst+td−fstd on its phasefstd by a functionFsfd.
This is done by minimizing the mean-squared errorŝ2

=kffst+td−fstd−F(fstd)g2l. The minimum ofŝ2 is an esti-
mate of the phase variance increment over the time interval
t : ŝmin

2 <ct. As stated before,t is approximately one basic
period. We quantified the phase diffusion directly by the
value ŝmin

2 , which represents the phase diffusion coefficient
multiplied by one basic period and divided by 2f45g. For all
dynamics investigated here these values are listed in Table I.

III. RESULTS

A. Unidirectionally coupled almost identical Rössler dynamics

Figure 1 shows results obtained for the almost identical
Rössler dynamicssn=0.03,N=10 000d. Both d and H cor-
rectly identify the weak unidirectional coupling between the
two chaotic oscillators: Both measures attain values distrib-
uted around zero for the uncoupled case and attain positive
values for nonzero couplings. In consequence, bothpds«d
andpHs«d grow from 0.5 to 1. However, the increase ofpds«d
versus« is faster than the one ofpHs«d resulting in «95

d

FIG. 1. Exemplary results obtained for the al-
most identical Rössler dynamics under variation
of the coupling«y. Panels in the upper row show
the corresponding distributions represented by
their mean value plus or minus one standard de-
viation: upper leftr«

d, upper rightr«
H. The refer-

ence distributionsr0
H and r0

d correspond to the
leftmost distributions. Lower row:pds«d sleftd
andpHs«d srightd. The horizontal lines in the left
and right plot represent the sensitivity thresholds
pds«d=0.95 and pHs«d=0.95, respectively. The
vertical lines mark«95

d and «95
H . In general, the

curves ofpds«d andpHs«d are nonmonotonic. For
the example shown here this nonmonotonicity
leads to a short drop ofpHs«d below the sensitiv-
ity threshold after the initial crossing of this
value. In thesesrared cases the second crossing
was used to determine the sensitivity threshold.
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,«95
H . In consequence, for the given time series length and

frequency mismatch of the Rössler dynamics, the sensitivity
of d is higher than the one ofH. The upper panel of Fig. 2
shows that this holds true for the whole range of frequency
mismatch investigated here. Hence, for the Rössler dynamics
with a well-defined phase the phase-dynamics approachsdd
appears superior to the state-space approachsHd.

A different picture, however, is obtained for longer time
seriesscf. Fig. 3d. The measured is superior toH only for
short and moderate time series length, while it loses its su-
periority for very long time series. Hence, here we observe a
superiority of H despite that the phases are well defined.
Furthermore, a view to the sensitivity thresholds obtained for
N=100 000 data points under variation of the frequency mis-
matchsFig. 2, lower paneld shows that for this length of the
time series, the measured is superior toH for small fre-
quency mismatchesn. For an intermediate range ofn both
measures have approximately the same sensitivity, and for

high values of the frequency mismatchH is superior tod.
The respective ranges of the frequency mismatch approxi-
mately match those belonging to the different synchroniza-
tion transitions reported in Ref.f41g and given in Sec. II B.
This might suggest a relation between the kind of synchro-
nization transition and the superiority of the one or the other
method. However, it is important to recall that the curves in
the upper panel of Fig. 2 do not intersect. Furthermore, if we
would use some other representative phase-dynamics and/or
state-space measures instead ofd and H, respectively, or if
we would use different parameters ford and H, then the
curves shown in the lower panel of Fig. 2 might well be
shifted and have different forms. Therefore, the relation and
the relative performance of our two measures should be re-
garded as a very subtle factor that deserves further studies.

For the frequency mismatch ofn=0.015 an outstanding
high value for«95

H is found. For an approximate range of
0.011,n,0.021 the dynamics of the drive system exhibits
a periodic solutionsresults not shownd. In consequence, the
response also passes through periodic windows with increas-
ing coupling strength, starting at couplings as low as«
=0.07f46g. At even lower couplings the measureH encoun-
ters difficulties to detect the coupling direction for this ex-
ample of a chaotic Rössler dynamics driven by a periodic
one.

To compare the robustness ofd and H against observa-
tional noise we superimposed the driver and response dy-
namics of the almost identical Rössler dynamicssn=0.03d
with uncorrelated additive Gaussian noise and calculated the
sensitivity thresholds of both measures for different noise
levels. The latter was quantified using the ratio of the vari-
ances

j =
snoise

2

ssignal
2 . s21d

An increase in the values ofj, of course, leads to increas-
ing values of both«95

d and«95
H , and only up to certain maxi-

mal noise levels is the sensitivity threshold reached at all.
Only up to thesejmax the respective measure allows distin-
guishing the coupled from the uncoupled case. From the up-
per panel of Fig. 4 it becomes evident thatH is substantially

TABLE I. Typical values of the phase diffusion strengthŝmin
2 for

individual uncoupled systems and relative performance of the two
approaches forN=10 000.

Systems ŝmin
2 Superiority

Rössler 0.05 d is better

Lorenz 0.8 H is better

van der Pol,Î2D=0.01 0.00008 d is better

van der Pol,Î2D=0.05 0.0017 d is better

van der Pol,Î2D=0.1 0.0068 d is better

van der Pol,Î2D=0.2 0.03 H is slightly better

van der Pol,Î2D=0.4 0.15 H is slightly better

van der Pol,Î2D=0.8 0.9 d is better

FIG. 2. Dependence of«95
d strianglesd and «95

H scirclesd on the
frequency mismatchn of the Rössler dynamics forN=10 000sup-
per paneld andN=100 000slower paneld.

FIG. 3. Dependence of«95
d strianglesd and «95

H scirclesd on the
number of data points for the Rössler dynamics with a frequency
mismatch ofn=0.03.

D. A. SMIRNOV AND R. G. ANDRZEJAK PHYSICAL REVIEW E71, 036207s2005d

036207-6



more robust against uncorrelated Gaussian noise. Although
H reaches the sensitivity threshold for values of up tojmax
=1, the measured does so only up tojmax=0.1. In the next
step we first filtered the noisy signals using a low-pass but-
terworth filter with a cutoff frequency of one-fifth of the
signals’ bandwidth, i.e., approximately twice the mean fre-
quency of the Rössler dynamics. The lower panel of Fig. 4

shows, according to expectation, that the sensitivity of both
approaches is increased again due to the filtering, but also
after the filteringH is more robust against noise.

Before we proceed to results obtained for the other dy-
namical systems we would like to illustrate the principal
limitation of the applicability of bothd andH to the nonsyn-
chronous motion. In Fig. 5 the curves ofpds«d andpHs«d for
the Rössler dynamics are shown for a much wider range of
the coupling strength. As indicated by the increase of the
mean phase coherence and the overall nonlinear interdepen-
denceHs, the transition to synchronizationsboth phase and
generalized oned takes place at the coupling strength of«
<0.08. At this transition bothpds«d and pHs«d drop from
values of 1 to 0; at even higher values of the coupling, both
curves rise again. This example shows that a reliable charac-
terization of the coupling direction cannot be obtained in the
synchronous regime of the dynamics or close to it.

B. Unidirectionally coupled Lorenz dynamics

For the Lorenz dynamics the sensitivity ofH for weak
directional couplings is higher than the one ofd regardless of
what variable is used for the calculationsFig. 6d. For the
observablesx1, y1, the phase-dynamics approach cannot de-
tect the coupling at all; it does not reach the sensitivity
threshold within the range of the coupling investigated here.
This finding is in accordance with expectation if we recall
that here the phases extracted fromx1 andy1 via the analytic
signal approach are ill defined. In contrast, the state-space
approach has the highest sensitivity for the observablesx1, y1
s«95

H =0.58d. For the observablesx3, y3, for which the phases
are almost well defined,d can detect the directional coupling
but it is significantly less sensitive thanH s«95

d =6.50 versus
«95

H =1.41d. For x1
2, y1

2, for which the phases are well defined,
the phase-dynamics approach becomes more sensitive but is
still far less sensitive than the state-space approachs«95

d

FIG. 4. Dependence of«95
d strianglesd and «95

H scirclesd on the
amplitude of superimposed noise for the Rössler dynamicssn
=0.03d. In the upperslowerd panel results are shown for unfiltered
sfilteredd time series.

FIG. 5. Upper row: Mean phase coherence
sleftd andHs srightd versus the coupling strength
« of the Rössler dynamicssN=10 000,n=0.03d.
Lower row: pds«d sleftd and pHs«d srightd. Note
that the leftmost part of the lower curves is also
shown in Fig. 1.
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=4.56 versus«95
H =1.31d. Hence, even if the phases are well

defined and the time series length is moderatesN=10 000d a
higher sensitivity of the state-space approach is observed.
This finding can be explained by the very strong phase dif-
fusion of the Lorenz dynamicsscf. Table Id, which apparently
strongly reduces the performance of the phase-dynamics
approach.

C. Bidirectionally coupled stochastic van der Pol oscillators

The dependencies of«95
d,H on the noise levelÎ2D of the

coupled van der Pol oscillators along withpd,Hs«d curves for
three exemplary noise levels are depicted insFig. 7 f47gd.
Values of«95

d rise monotonically with the noise level, i.e., the
sensitivity decreases monotonically. As to be expected, the
phase diffusion coefficients also increase with increasing
noise levelsscf. Table Id, again showing a strong impact of
the phase diffusion on the performance ofd. The dependence
of «95

H on the noise level is considerably more complicated.
First of all, it exhibits a distinct minimum, the highest sen-
sitivity is not obtained for the lowest noise level. We report
here that a closer look onHsXuYd and HsYuXd reveals the
reason for this findingsresults not shownd. For the lowest
noise level investigated heresÎ2D=0.01d, we, indeed, obtain
the results that we expect for the unsynchronized motion:
HsXuYd.HsYuXd⇒H,0 for «,0.03 and HsYuXd
.HsXuYd⇒H.0 for «.0.03. However, values of both
HsXuYd andHsYuXd attain almost maximal values through-
out the range of the coupling« f48g. In consequence, their
differenceH remains quite small and the sensitivity for weak
directional couplings is rather low. With increasing noise the
saturation ofHsYuXd and HsXuYd diminishes. On the other
hand, the additional noise increasingly disturbs the determin-
istic structure of the oscillator. While the first effect increases
the sensitivity ofH, the latter decreases it, resulting in the

FIG. 6. Values ofpds«d strianglesd and pHs«d scirclesd for the
Lorenz dynamics obtained for the variablesx1, y1 stopd, x3, y3

smiddled, andx1
2, y1

2 sbottomd.

FIG. 7. Upper row and left panel of lower
row: values of rds«d strianglesd and rHs«d
scirclesd for the van der Pol dynamics obtained
for different noise levels. From left to right and
from top to bottomÎ2D=0.01, 0.4, and 0.8. The
vertical dashed lines mark the symmetrical cou-
pling s«=0.03d. Right panel of lower row: De-
pendence of sensitivity thresholds«95

d strianglesd
and«95

H scirclesd on the noise level.
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minimum of the dependence of«95
d,H on the noise level cor-

responding to an optimal noise level. For noise levels some-
what above this minimum the state-space approach becomes
slightly superior to the phase-dynamics approachf49g. For
the highest noise level investigated heresÎ2D=0.8d, how-
ever, H does not reach the sensitivity threshold any more,
whereasd still allows one to correctly determine the cou-
pling direction.

D. Couplings between significantly different dynamics

Thus far we considered only cases of couplings between
slightly different dynamics, where the notion of predominant
coupling direction could readily be introduced even for bidi-
rectional coupling. We now address the applicability of our
techniques to couplings between significantly different dy-
namics. Here we only consider unidirectional coupling be-
cause the notion of coupling direction is ill defined for struc-
turally different bidirectionally coupled subsystems. Results
obtained for the significantly different Rössler dynamics are
shown in Fig. 8. We recall that here theX dynamics is cha-
otic, and theY dynamics is periodic. Thus, the phase diffu-
sion coefficient is exactly zero for theX dynamicssnot in-
cluded in Table Id.

First of all, it is important to note that values ofH andd
obtained for the uncoupled dynamics are biased: The distri-

butionsr0
d andr0

H are not centered at zero but rather shifted
toward positive and negative values, respectively. For the
measured confidence bands were derived in Ref.f24g that
readily allow one to reveal the nonsignificance of these non-
zero valuessresults not shownd. However, no such confi-
dence bands exist forH, and here only the use of bivariate
surrogate time seriesf50–52g could help to rule out spurious
conclusions about the presence and/or direction of a cou-
pling. In any case, due to the shifted reference distributions
the judgement of the measures’ sensitivity becomes rather
problematic. If we proceed, nonetheless, we can see that for
the driving directionX→Y the measureH attains positive
values and formally has a very high sensitivity that even
surpasses the one ofd. For the opposite driving direction,
however, the curvepHs«d first crosses the value of 0.95,
falsely indicating a coupling fromX→Y. This is in some
analogy to results obtained for the periodic regime of the
driver of the almost identical Rössler dynamics; againH en-
counters difficulties for a chaotic Rössler dynamics driven by
a periodic one. Regarding only the curves ofp0

d suggests that
the measured correctly detects both driving directions. How-
ever, looking atr0

d for the Y→X we see that positive values
of d are obtained up to a quite high value of«<0.015. We
note that also this bias turns out to be insignificant with
regard to the confidence bands ofd.

FIG. 8. Results obtained for
the Rössler dynamics with signifi-
cantly different parameters for
both coupling directions. Upper
four panels:X→Y, for this cou-
pling direction we expectpositive
values of d and H. Correspond-
ingly we have to use«95 as sensi-
tivity threshold. Lower four pan-
els: Y→X, for this coupling
direction we expectnegativeval-
ues ofd and H. Correspondingly,
we have to use«05 as sensitivity
threshold. First and third row:
r«

d,H. Second and fourth row:
pd,Hs«d
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In summary, these results reveal some caveats in the ap-
plication of both measures to couplings between significantly
different dynamics. Therefore, in applications to real-world
dynamics, which are often significantly different, one has to
be very careful with the conclusion of a predominant driving
direction derived from absolute values ofd andH. Nonethe-
less, relative changes of these measures could be used to
trace the change of the dynamics’ coupling characteristics in
the course of time or under the change of some parameter of
the dynamics.

The results obtained for the van der Pol–Rössler dynam-
ics, two structurally different dynamics, are shown in Fig. 9.
Looking at the curves ofp0

d,H, we see that both measures
correctly detect both driving directions and that a little higher
sensitivity is obtained ford. This finding is in accordance
with results for the other systems with low phase diffusion.
However, we should note again that in this case the values of
d obtained for the uncoupled dynamics are positively biased,
whereas values ofH are distributed around zero. Again the
confidence bands ofd reveal the nonsignificance of this posi-
tive biassresults not shownd.

IV. DISCUSSION

We presented a detailed comparison of two approaches to
the detection of weak directional couplings, a representative

state-space approachscharacteristicHd and a representative
phase-dynamics approachscharacteristicdd. We analyzed
several exemplary mathematical model systems and also
analyzed the influence of observational noise and the time
series length on the performance of the two approaches.

First of all, we would like to recapitulate that a well-
defined phase is a prerequisite for the application of any
phase-dynamics approach. If no meaningful phase can be
extracted, then one should only apply a state-space approach.
We used different observables from the Lorenz dynamics to
illustrate this evident fact. Our results, however, indicate also
that a well-defined phase does not necessarily result in the
superiority of the phase-dynamics approach. In contrast, we
provided various examples for which we obtained superiority
of the state-space approach for dynamics with well-defined
phases.

As a very crucial influencing factor, we could single out
the strength of the phase diffusion. The comparison of the
Rössler dynamics and the different observables of the Lorenz
dynamics, as well as the variation of the noise level in the
van der Pol dynamics clearly revealed the lower the phase
diffusion, the more sensitive is the phase-dynamics ap-
proach. For the state-space approach, the situation is a bit
more complicated and one has to distinguish between phase
diffusion caused by deterministic chaotic and stochastic dy-

FIG. 9. Analogous to Fig. 8
but for the unidirectionally
coupled Rössler–van der Pol dy-
namics. Upper four panels van der
Pol oscillator is driving the
Rössler dynamicss«y=0,Y→Xd.
Lower four panels: Rössler dy-
namics is driving the van der Pol
oscillator s«y=0,X→Yd.
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namics. The former does not reduce the sensitivity of the
state-space approachssee again the almost identical Rössler
and Lorenz dynamicsd. Stochasticity, however, generally
lowers the sensitivity ofH to detect interrelations between
the two dynamicsssee again coupled van der Pol dynamics
and the coupled van der Pol–Rössler dynamicsd. On the other
hand, we observed an intermediate level of dynamical noise
in the coupled van der Pol dynamics for which the state-
space approach was approximately as sensitive as the phase-
dynamics approach or even slightly superior to it despite a
comparably low phase diffusion. The superiority of one or
the other approach probably depends on how the noise is
“distributed” among the dynamics of phases and amplitudes.

The second factor that is very important is observational
noise. By considering noisy time series from the coupled
Rössler systems, we found the state-space approach to be
considerably more robust against observational noise than
the phase-dynamics approach. At the first glance, this can be
regarded as a surprising result because one could expect that
the extraction of the phase acts as an effective filtering. How-
ever, with an increasing level of observational noise, spuri-
ous jumps of the calculated phase by ±2p become more
frequent, significantly affecting the performance of the
phase-dynamics approachf53g.

On the same example of the almost identical coupled
Rössler dynamics, we studied the influence of the time series
length, which turned out to be the third very important factor
influencing the performance of the two techniques. One has
to recall that the measureH is calculated with a fixed number
of nearest neighbors. Under an increase in the time series
length, these neighbors will, on average, be found in shorter
distances to the reference points. Closer neighbors are better
suited to characterize the dynamics in the vicinity of the
reference point, resulting in a higher sensitivity ofH. This
distance scales asN−D, whereD is the fractal dimension of
the attractor. As for the phase-dynamics approach, the stan-
dard deviation of the estimated scales asN−1 f24g, and it can
be shown that the sensitivity threshold for largeN must scale
approximately according to the same law. The first effect
appears more dominant as we found the sensitivity ofH to
increase more significantly with the time series length than
the one ofd, and we can conjecture that this effect will be
even more pronounced for higher dimensional dynamics
f54g.

Moreover, in case of very long time series one can ob-
serve some more subtle factors influencing the performance
of the techniques. Our results obtained for the almost identi-
cal Rössler dynamics suggest that, depending on the form of
the transition to the synchronous motion, qualitatively differ-
ent precursors are present in the properties of the dynamics
of the driven system at very weak couplings. These different
precursors can be detected best using a phase-dynamics ap-
proachsif phase synchronization comes first with an increase
in coupling strengthd or a state-space approachsotherwised.
Certainly, the mechanism underlying the different transitions
to synchronization are not completely understood, and we
shall emphasize the limited conclusiveness of our results for
this context. Doubtless, this interplay of generalized synchro-
nization and phase synchronization and the different precur-
sors found in the dynamics appears very intriguing and de-
serve further studies.

Let us finally note that there are some differences between
the two representative techniques considered. The phase-
dynamics approach used here is based on a parametric rep-
resentation of the systems under study, whereas the state-
space approach is nonparametric. This asymmetry was not
introduced by us artificially but corresponds well to the un-
derlying ideas of both approaches. The parametric represen-
tation of the phase dynamicsstrigonometric polynomialsd is
quite universal and flexible because of the physical con-
straint of the phase variable; the dependence on the phase
must be 2p periodic. Therefore, the choice of trigonometric
polynomials is very natural. One could use a nonparametric
approach to model the phase dynamics as well, e.g., local
linear modelsf6g, but it can be argued that such an approach
would give approximately the same results and would be
more vulnerable to noise and dependent on the time series
length. As for the state-space approach, one could not readily
use a parametric approach instead ofH because there is no
general way to parametrize arbitrary multivariate dependen-
cies. Furthermore, it should be noted that the measured tests
for the influence of present phase values of one dynamics on
future phase values of the other dynamics. In contrast, the
measureH only evaluates present states of simultaneous
space vectors. Therefore, at first sight it appears more logical
to compared to a mutual prediction error schemef9g that
also incorporates the future evolution of state-space trajecto-
ries. However, in delay coordinates the information about
future state-space vectors is incorporated by simply choosing
a long delay window. The information given by a present
state-space vector and its future states is basically the same
as the present state-space vector with a longer delay window.
Hence, the information about future values is implicitly used
for H, and, with the parameters specified above, we expect it
to give basically the same results as a mutual prediction
scheme. Furthermore, the measureH appears conceptually
more straightforward as has less parameters than a mutual
prediction scheme, and no specific predictive modelse.g.,
locally constant versus locally lineard has to be chosen.

For the three main factors isolated here one can conclude
that the phase-dynamics approach appears superior generally
if the phase diffusion is weak, observational noise level is
low, and the time series are not very long. Otherwise, the
state-space approach appears superior. However, the relative
performance of the approaches is influenced also by some
more subtle factors such as stochastic or deterministic nature
of the phase diffusion and the kind of transition to synchro-
nization regimes with increase in coupling strength. Thus,
neither of the two approaches investigated here is generally
superior to the other, but rather both have their specific
strengths and weaknesses. In applications to experimental
time series one should, therefore, not favora priori one or
the other approach but rather consider applying both tech-
niques. It is probably the combination of information from
both techniques that allows the most comprehensive and re-
liable characterization of unknown dynamics.

An investigation of real-world dynamics, such as neuronal
dynamics or genetic microarray-produced time series, shall
be the subject of future investigations. In contrast to the
models investigated here, neuronal dynamics do not repre-
sent pairs of coupled but nonetheless distinct and self-
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sustained oscillators. Rather, time series measured from the
brain, such as the electroencephalogram, always reflect the
interaction of millions of individual units organized as qua-
sicontinuous networks. Due to the superposition of an un-
counted number of degrees of freedom, even the reconstruc-
tion of the dynamics using delay coordinates and the
estimation of the phase using the Hilbert transform can be
problematic. For this reason it is sometimes argued that mea-
sures such asd or H should not be applied to neuronal dy-
namics because the underlying assumptions are violated.
However, the complementary point of view, which we share,
is that, in particular, these complicated properties make neu-
ronal dynamics a very interesting field of application, and
recent studies show that such applications can indeed con-
tribute to our understanding of the brainssee, for example,

f21,55g and references thereind. Finally, a comparison against
different information-theoretic approaches based on recon-
structed state spacesf56g and/or phasesf7g should also be the
subject of future investigations.
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